

Subjects: Antiksthera mechanism (Ancient calculutor), Attoronmy, Greek

1. Introduction
1.1. The Antikythera Mechanis
and dssware whichank with in he Greek mainland.-3. The shipweck site was discovered by Symiote sponge divers in 1900 and salvaged by them, under Greek government supenision, in $1900-190.1$. In 1002 fragments of the Mechanism were hoticed among unsoted bronze pieces from the wrek at the National A Accheological Museum in Athers


```
Sdentificdata produced by HewetetPodard In. This stows Polymomia
*)
 dill and of the curfacese of the froamenents are int in in detail, showing meechanical features as well a s inscriditions, which of the suffaces of the framments are nich in detili, showing mechanical features as wel as inscriptoins, which
cover some of the surfaces. The eremains of about a dozen gears reve visibe on the surface and the rest have been identified through \(x\)-ray studies

\subsection*{1.3. Scientific Investigations}

There have been three major \(x\)-ray studies of the Antiktherer Mechanism since the earty 1970 . 5 . In addition. the National Archaeelogical Museum in Anthens has undetroken \(x\)-ray studies of some individual rraments. Historically, many of the most important scientific developments have come tron investigations. The most recents scientific data gathering was undertaken in 2005 by

\section*{e Antkythera}

Proiect (AMRP)
-an informal collaboration of cacadenics from
the univestities of Cardiff, Athens and Thessaloniki; staf ft the National Accheeological Museum in Athers; and two high.tecthology companies, Hewett-Packard (USAA) and X-Tek Systems (UK) (now part of Nikon Metrology). Two non-destructive investigatory techniques were used:

\section*{ray computed Tomography (x-ray ©T) to examine}
the interiors of the frogments at high resolution.? PTM enables a sample to be interactivey "relit" in software to enhance the surface. It has the ability to toator out contusions of colour and texture to reveal the essential form of the sufface. TTis dramaitacly inporves the interpetation of surface edeails. X-ray \(C T\) makes possible the reconstunction of high-resolution \(30 X\)-ray volumes of the fromenents. \(X\)-ray \(\mathbf{v}\) wiving software, VGStudio \(M\) Max by Volume Graphics, enables "sicess" to be veiewed at dififerent angles through the sanple. We have found
 .
 the fragnents, which are not visible on \(2 D\) X-rays. Al 82 frogments were subjected to booth techniuwes subsecuent scientific andysis resulted in a new interperation of the gears and their functions as well 15 marked increase in the number of inscritions that have been read-many discovered using X-ray \(\mathrm{CC}^{\frac{1}{3}}\) In reeent years, the new data and scientific results have created considerable intemational research activity focused on the Antiksthera Mechanism

\subsection*{1.4. The Functions of the Antikythera Mechanism}

\subsection*{1.4.1. Extemal A Architecture}
A.Antixythera Nechanism was contained in a wooden box, which had bronze Front and Back Covers. A mail portion of the wooden box, as well as a wooden sub-frame, survive in Fragments \(A\), \(F\) and 14.9 We infer the existence of a wooden sub-rame from our own observations of the \(x\)-ny \(C T\) data. It appears to have encased al the gears, while the outer box caried the front and back plates. The evidence for the front Cove is from Fragment \(G\) and a number of other smal fragments. These estalish that the Front Cover had inscripioions facing outwarcs. The Front Cover may have covered the whole of the front or just the central dialthe evidence appears to be issufficient to settle this issue. The Back Cover appears to have covered the whole of the back dials and to have been fixed to the Mechanism with sliding catches, since our observations of ray C of frogment \(F\) estabish that there was a sididng catch in the botom righte-hand comere of the Back


\section*{are}

Ton ked with 365 days. The Calendar ommodate the fact that four Egpptian calendar years fall short of four 356.25 day solar years by one day. \({ }^{1.2}\) Above and below the dials, were
 crank, though only the keeway for the input remminss. Beneath the removable Back cover, there were two mijor dial systems (top and bootom) in the form of spirits, divided into unnar months, with subsidiary dials
 dial was a subsidiary dial, showing the 4year panhelenicic games yccle and (coniecturally) a dial showing the

 ime of the elipse. \({ }^{- \text {Ins.ide }}\) Ind this dial .
The Antikythera Mechanism is an astronomical calculuting machine that preficted phenomenena involing the Sun, Moon, stars and probably the planets-the atater being the focus of considerable debate and the subjed of much of this current study. Our condusion in this stuyd is that the Antiksthera Mechanism almost cetainly calculated the motions of all five planets known in andient times.

\subsection*{1.5. The Cosmos in the Antikythera Mechanism}

Improved readings of an inscripition that was on the Mechanism's back cover and that described its extemal features and displays leave iltele room for doubt that the forot display incorporated revolving

motions around the Earth. \({ }^{\text {I. }}\)

\section*{fo. 2 me Anstotelan Cosmos}
in Giovamid if Paol's The Cration
Exucusion foom Paradise (1445)
Wikimedia Commons.

Ior the five elonest, Sun, and Moon with the eterestia abobe at the cantre
Each sphere is said to move through a "circle" belolnging to the planet, strongly suggesting thata ceetain feature

\section*{of the front isplay that the inscripition calls the "cosms"s was in fatt the entire front dial, portraying in \\ cross.section the Aistotelian conception of the universe as asystem of nested geocentric spherical shel}




\section*{of the New Model}

One of the key questions that a rises from the "Cosmss" theory about the front face of the Mechanism is Whether mechanisms for all five planets can realisticaly be inculued, using similar design and mechanical principles to those found in the surviving gear trains.
The first person to interperet the Mechanismis trognents as the remmins of a planetarium and to propose that it displayed the five planets known in antiquity as wel as the Sun and Moon was the classicist Albet Rehm, though his prescient research notes, wirten in 1095-1906, were never pubisshed. . His idea was that the five turns of the dial in Fragment \(B\) B, which we now call the Upper Back Dial, represented the five planets. This idea could only make sense pior to 2004 , when Wright established that the dial does not consist of concentric inngs, but is in fact a spiral. There is now anple evidence that this dial was a 19 year Metonic cleendar and had nothing to oo with planets.
In 2002 Wright showed through a working physical reconstruction of the Mechnanism thatit was possible to include all the planets at its front, though, in our vew, at the expense of vvocidable complication and
 he foront of the Mechanism-was a remarkable vew of the possible capabilities of andient Greek technology discuss this model in nore edeal in 3.5
This present study ains tos show how all five planets can be included in the Antikythera Mechanism in a way This present stuyy aims to show \(\mathbf{n o w}\) all five planest can ee incuuded that confoms to the obsereded data and explains several purzing pieces of evidencet that have been design vituosity that has arready been uncovered in the exsiting gear trains. Despite the lack of physical evidence in the form of survining gears, we beieieve that the close match of our model with other physical evidence as well as its intimate concepulual association with the known gear trains create a compeling case that this was in essence the way that the Mechanism was orgignally constructed.
The infeioro planets are those whose orbits are inside the Eartr's orbit-namely Mercury and Venus. The superior planets have orbits outside the Earth's. Those known in ancient times were Mars, Jupiter and Satum All the planets appear from the Earth to obbit nonunifiomly, with a periodicic atemation of prograde and retrograde motion. Andient Greek models of planetayy motion pior to Potoleny were based on the idea that these "anomalistic" motions could, at least in first approximation, be modelled using a combination of tuo circular motions-the so-called "deferent:-and-epieccle" and "eccentre" modesl.2.2 This theory poparently ate cannot be ruled out.². U Uing these ideas, the motions of the inferior planets can be mechanized fairy easily with just two gears-a fixeed gear on the eentral axis and an epicyclic gear that engages with this treed gear
 way that fits the mechanical constraints of the Mechanisms's design. Our reconstuction proposes mechanis for the superior planets based on the enown mechanization of the Unnar anomaly at the back of the Antikthther Mechanism Surpisingly, these modes look exactly the same as the lunar anomaly mechanism

explains the existence of bearings and fitings on the Main Drive
Wheel ble as well as the mysterius" "pllars" attached to its dirunfference. \({ }^{\frac{\Sigma}{T}}\) The model ase
accounts for the dimensions of the pillars. Al of of our planetary mechanisms are contained in the space in front of
al that is defined by bye support pillarss-a circunstance that could also help explain how all the planetary
is not dear to us why the "monthly rotation" night be relevant to the planets, but the rest of this didea is presereed in our model. Our model also retains the simplicity in the outward design of the Mechanism as a rectangular box that Price proposed. As previusly mentioned, Wright has demonstated the feasibility of including all five planets in the Antiktherer Mechanism using essentially the same technology and engineering that we see in the surnining fragments. We discuss tits isportant model later in 3.5 . In Wight's model, the solar anomaly was mechanized as well. In the light of the subsequent discovery of the mechanization of the Unnar anomaly in the Antiksthera Mechnism, we believe thatit was ver likely that the solar anomaly was asso inculued.
A recent carefulu study has demonostrated that the graduation of ot lest one of the two extant front dial rings. the Egyptian calendar ring and the zodiac ing, had a small apparently systematic nonuniformity, which can be explained as a deliberate nonnuiform spazing of the degrees on the zodiaic ing so that a unfifmly calendar datele \({ }^{2 / 2}\) On this hypothesis, the motion of pointers representing the motions of the Moon and Planets would incorpoorta a solar anomaly component ta not inconceivable notion, though contray to
Known ancient theories) unless the pointers revolved around an eccentic axis. An alteradive e Planetar display also explored in that study hyoothesizes that there were no pointers for the planets revolving around the asso explored in that stuay hypothesieses that there were no pointers tor the planets revolving around the planet's'synodic cydes. We believe that the inscripioional evidence examined below rules out such subsidiary



 anomaly through nonuniform graduation of the zodiac ing instead od



\section*{2. Evidence \& Models}
2.1. Introduction

\subsection*{2.2 Astronomical Mechanisms in Classical Literature}

Allusions to mechanical representations of satronomicil phenomenea tum up intermitenty in ancient Greek
and Latin ilterature: unfortunately most are vague and do not refect firsth-hand experience of such devices. \({ }^{\underline{2}}\) Aimootant exception is Cicero, who refers in his De Natura Deorum
2.3435 (87-88) toa mechanism (spheera , itterall "sphere") consturcted by- or perthaps nore plausible to say at the commission of - his philisopphical teacher Posidonios in Rhodes, probably in the 80 arcos C. Cicero does not say explicity that he had seen Posidonios' device, butitit is likely enought that he had, and in the worst case his direct connection with Posidonios renders it unikely that his information
 tor phisosphical argument tor the existence of a divine designe
 ane cosms. the dideffic to convince any viewer that it had been constucted by an inteligent mind. Io nis context, any explanation of the concealed mechanical workings of P Posidonios' mechanism would tavedetrated from the analogy he is crawing between it and the cosmes
In tww other works, the Tusculan Disoutation

\subsection*{2.3. Inscriptions on the Antikythera Mechanism}

Inscipioins in ancient Greek have been found in many of the fragnents of the Antikythera Nechanism. Practicilly al of them were originally on or r round the dials on the exterior of the Mechnaisisi iseff, or on the detachable cover Palates the exceptions are eleters or rumerala on a few itherior components, whic words, ,umerals, and symbols, and give information necessay for the reading of in iformation off the dials for example the year numbers and month names on the spiral Metoticic calendard dial. The olonger inscripitions, none of which survives in its entirety, were generaly expressed in complete sentences, and provided detailed information about the Mechanism and the astronomical phenomena thatit itisplyyed, probably intended for the eenefit of the operator and speetators of the Mechanism in action.
The inscripitions are engraved instifluly executed seified capital leters very similar to the letetering of inscripioins on stone from the last three centuries EC. The eleter forms are most characteristic of the second har
 the first camot be excluded. Even by the standards of t this period, when stone inscriptions with leter height about 5 m were not uncommon, the eletereng on the Mechanism is tiny, with the leterer height ranging from about 2.7 mm in the "parapegma" inscripion down to about 1.2 mm (i.e. smaler than modem 4 point type) the inscripitions on the back spiral dials. The layuutit ts tpical of contemporay stone inscripions, with no Space between wordss (but occasionally abit of space before and ater rumerals and at the start of new sections of text) and nop punctuation. At the e ens of fines, words that are too long to be completed on one line are
 of such prepearation sunvives. The text is in the standard soine Greato to the of the time, with of such preparation shives . Greek of the me, with no characteristic
Te constelations for which they were named.) The zodiac ring also has alphabetecic eleters inscribed next to
cetain of the degree markers, which keyed to a so-called Parapegma inscripion ISting first and last visibilitie
of bright stars and constellations that were supposed to occur annually when the Sun was at the degree
in question. This fact shows that the dial must have had a pointer indicating the Sun's Iongtude.
The inscripion on the front cover plate (chiefly surviving on Fragment \(G\) ) is extensive but badyly preserved, and
as yet its contents are only partilly undestsood. A provisional transcripioio, greaty augmenting the one


heavenly body reverses the direction of it onggitudinal motion, show that the text concemed lanets, sine the
Sun and Moon extibit only prograde motion. The temm "greatest
longadion" (megiston apostềma lalso occurs, meaning a date whe
a boods distance in longitude from the Sun reaches a maximum to either the east or the west: this phenomenon
is only appicable to the apparent motion of mercury and venus. One of the Greek names for
Venus, Aphrodité

the eechanism only makes sense it the Mechnaism somenowow displayed nonuniform planetary motions or ocdes
of symodic phenonenena

\subsection*{2.3.1.the Back
Cover luscripion}

Small pats of the inscipition of the back cover plate are presened on isolated survining pieces of this plate (most of which has been lost), in fragments \(19, \mathrm{~B}\), and E ; much more of it exists in the form of ffssets, that is, mirror-reversed inpressions on a layer of material composed of sedimentary accretions mixed with on Fragments \(A\) and \(B\) was noticed, and a few eeteres were transcribed and their significance hoty debated, at the time that the main fragments of the Mechanism were discovered in the National Acrcheological Museum in 1902 .. Fragment 19 , which had been attached to \(A\) with its inscribed side concealed, was detached and its
 and the back displays of the Mechanism. The tanscripioins pullished byy Price in 1974 gave what was legible that pubicicaion.". The most reeent transcripioion, , wullished in 2006, drew on all the relevant fragments including text visible only through C , and marked a substantial a avance with respect to both the extent and the accuracy of the readings- - eesearch since 2006 based on CT and PTM datat has resulted in
further inprovemenents of detail as well as aftiler understanding of the structure and purpose of this inscripion. Fragment B bears legible offsets of parts of 28 conseative lines of text, with slight traces of nothe inine at the top. The left margin of the text, which was apparenty very cose to the edge of the inscribed plate, is


 are taller, while 0 is sually shoter. The widths of different leteter vay. The average leterew with in the with cetitude), is about 2.3 mmleteter, but the average width in an indwividual line can be as much as ten or fifteen percent greater or less than this. The tersest plausible restorations we have been able to devise for the lost text in ines 16,22 and 23 require lines of 75.84 etetess, consistent witha line width about 170 mm Sine the width of the Mechanism is estimated to have been 184 mm , there cannot have been much wasted space on the plate. The fact that the offsests on fragment s show the edge of the plate more than 20 mm to the let on the plate. The fact that the offsets onf framment s show the edge of the plate more than 20 om to the eleft
of the ight edge of the fragment indicates that the plate, or at least a piece of it, had become displaced during the time that the Mechanism was under the sea.
Attrough less than half surives of even the best preseseded lines, this is enough to reveal the inscipition's content and structure. It was an itemb-by-item inventory and descoipioion of the extemal features and displays of the Mechanism, dealing first with the front face, then in tum with the upper half and the lower haf of the back face. The switch from descsibing the front to describing the back appears to coincide with the break between the parat of the text on Fragment B and the parat on the other fragments. Components, chiefy dials and pointers, are described according to theirl location, appearance, and meaning, but no explictit instructions for the we offle Meechanismsem. the inperative mood. The surviving text also makes litte reference to the intemal mechanism The vocabulany does not seem to have incuuded any specialized astrononical temminology that would have been unfaniliar to a by reader, but there are several instances of technical vocabulayy form mechanics.

We offer here a new transcripioion and transation of a series of e elven comparatively well preserved lines


\section*{nengin to the portion of the inscipition on Fragment B describing the front dial. The transcripioiof follow} the Leiden conventions for presestining ancient Greek and Lation inscripioions. Square brackets enclose lost Ieters, and the open Ssurare hracket at or near the end of each ine marks hhe end of the preseeved text
 sublinear dots without letetes represent visile traces that camnot be identified. Names for the planets are highlighted in red.







Iltte pointer projecting foom it..

Phosshoross, the star of Aphrodite..
Phosshoros there revolves the Sun?
pointer lies a golden litte sphere..
ray of the Sun. And above the Sun is a circle.
Pyroes, the star of Ares, and the lilite sphere] traveling through.
Phaethô, the star [of zeus), and the litite sphere) travelling through.
iicle of Phainon, [the star of Konoss), and the litte sphere.



Before discussing this passage in detali, we traw atention tot the presence of key tems for our aryument

2006 transcipition, whereas the other Planet names were not recoconized. The planets are denoted by

socalle theophoric
descriptive of the
names associating a planet with a deity, and nay
descripitive of the visual appearance of the planet. The completes systens of names are as follows:
\begin{tabular}{|c|c|c|c|}
\hline Modern & Descritive na & & Theophoric amme \\
\hline \(\underbrace{}_{\substack{\text { Meaury } \\ \text { venus }}}\) &  & \({ }_{\text {(gitereing) }}^{\text {(Igitutbininging) }}\) & \(\pm \begin{aligned} & \text { staro f temes } \\ & \text { Starof tumodite }\end{aligned}\) \\
\hline
\end{tabular}

\footnotetext{

 descripitive names of Jupter and Satum were probabaly preeceded too by their theophoric names. Line 17 begins with the final leteres of a word, tos \(\quad\), Which is is ikey to be ethe end of the descripitive name
of Mercury in the gentive case. Stilonos
.There would not have been sufficient \(f\) Mercury in the genitive case, Stilbontos
in the lost parts of ines \(18-24\) for incusion of Mercury.
The order in which the planets appear is not random. We have the sequence Venus, Sun, Mars, Jupite, Satur. Meruur, as pointed out above, is is ikey to to have come before Venus, and, atthough the ("Moon") is ont found in the ven fragmentaraly aresesued ine the word selènè ("Moon") is not found in the veyy fragmentanly preserved lines preceding line 15 .
 black, haff-white ball to show the Mon's phases., was referede toin thoses ines. Thus we have the presumed distances from the Earth from the nearest body (the Moon) to the furthest (Ssatum), beyond are the fixed stars. This order was based partiy on obsenvale facts, in particulurt that the Moon can elipipe the Sun and can occasionally occult planets and stars, and partly on the assumption that the longer a planet tokes to make a circuit of the zodiac, the furthe it must be foom the Earth
In making sense of a frogmentary inscription of this character, a fuitulu strategy is tolook for parallel passsoges that appear to be erepating sinilir words or ideas, for example the repeated references here to pointers, irdes, and movemenents characterized as "noving through", "revolving", and "traveling through". This is cleary the descipition of a system of pointers bearing itite spherical or circular enblens on them to represent the heevenly bodies, revolving around daili or dials, The first pointer mentioned, in line 15 , belonged (as we hypothesize) to the Moon, and since this was the first pointer, its descripition was suitably followed in line 16 by a description of the two graduated rings to which the pointers presumably extended: the fixed 2 odiac cing divided into 360 degress, and the movable Egyptian calendar ring divided into 365 days.
 the previously mentioned body, and " "ittele sphere" that moved or revolved through htis icrcle. The space avilible for the lost portions of the line is isst great enough for this information toft, along with a one word characteriztion of the iltle sphere there is ititle freedom to restore the lines in any other consistent
For example, Ine 22, if conjecturally completed as follows, is ust within the pluusible eleter-cunt range:
[2:3 lett.


Pyroeis, the star of Ares, and the lilite spherel traveling through [it sis
fiey-red. Above Pyroesi is ciricle beenonging tol


 be difficuilt to make sense of the order in which the heevenly bodies are discussed, with Mercury and Venus coning betwen the Moon and Sun, attough the pointers for the Sun and Moon were cetainly using the same dial. The order is clearly based on the eresummed gececenticic distances. Thus we infer that the "cirides were concenticic rinss inscribed or immgined within the dial. repersesting the spherical etherial shels that contained the visile heavenly bodies according to the andient Greek s s-called Aistotelian cosmology. Eac litte spherical marke repersenting the planet ata different distance foom the common axis, so that the the Sun in ine 21, it means "tuuther out from the center rother than towards the top of the Meechanism We further ceilieve that the deccipition of each "ilite sphere" is most iliely to have been a specifiction of its clour, by analogy with the surviving reference to the "goden sphere", which in all probability described the Sur. A dial constunted in this maner would have e eqeantly combined wwo functions of the Mechanism as an analogue computer, peemititing quantitative read- off of the Iongitudinal positions and motions of the heavenly bodies, and as an educational wonder-working device, portraying the cosmos and its constituent parts in their hiearchical stucture and intricate movements. The entire complex of dial and pointers on the Mechanisms front thus could by metonymy beitseff called the "cosmos", and we re convinced that this is what the word kosmos in line 25 refereded to. Though kosmos
of possible meanings outside of scientific contexts, in Hellenisic astronony it aways meant either the aggreate of the heavens and the Eath or the heavens as distinct from the Eath (as in the expression, "daliy revolution of the Kosmos ").
The nested sphere cosmology had wide acceptance in Greek science foom the fourth century BC on, and it was one of the parts of astronony that an eucucated layman could be expected to koow; it figures, for exannle, it the firist clappler of ceminos introduction 10
the Phenomena , a popularization of astronony foom the first century
 in coss section as a seneis of concentric ciruluar rings surrounding a circulare Eath trequenty ocur in medieval manuscripts and even in Renaissance painitings ffig, 2). The outermost sphere of the fixed taras is very Often represented in these pitures as a ing containin

\subsection*{2.4. Mechanical Features of Fragment}
2.4.1 Intemal Acrchitecture

All the following remarks are founded on close obsevection of the scientific evidence and extrapolation from
}


\footnotetext{
,
ceas in
}

When the input of the Antikgthera Mechanism is tumed, a complex geaning system calulultes each of the
outputs, which are isplayed on the cials. The Mechanism is constructed from plates, dials, gears, Bearings,
arbors, pins, ivets, nails and sliding catches, There are no screws or nuts and bolts. The plates are parallel and are held in place by a wooden sub-frame and an extemal box. The gears are very closely packed together and
 or horological practice and it may well have cused problems with fricition. The larger gears nu close to The gears. \({ }^{\text {E. }}\) These appear to be designed to prevent the gears rocking on their xes. II addition, the Main Dirive Wheel bl, is constrained by four clips attached to the Main Patat, which hold the gear paralle to the
 riction involved. In orderet to overcome fritition, itits iskely that the surfaces of the gears were highly polished and well lubicate
he device is vey well made, without any evident mistakes. A number of prototypes of this paticicuar model might have been made previousy in ordie to getall the parameters and measurements corect, since the machine is very complex. For the mechanism to have worked, it must have been made to very cose tolerances in some parts titappears to have been constructed to accurraies of tew tenths of a mulimetre. It is evidenty long history of developmento of similar deicices. This is ikiey to to heve stateded with much simpler instrumen before reaching the extraordinary complexity of the Antikythera Mechanism It it surpisingly smallpresummbly being designed for portability. The smal size inceases the engineering difficulties and previus instuments may have been made at a larger scale. The developmento of such sophisicicted mechanisms is IIkely to have taken place ever a considerable tine scale -at least decades and possibly centuries. By the era of the Antiktherer Mechanism, Greek mechanicians had reached remarkabie level of fluency in the use of gear trains to make complex calculations, using highy advanced technicues such as epicycicic gears and pin-and-slot devices to model variable motion.
The Mechanism would have been very difficult to make without an aray of tools 5 -inculuing files, hammes pliers, dividers, unuers, dilils and lathes-some of which we associate with hater engineering traditions. The unevenness of some of the divisions of some of the gear teeth suggestst that a dividing engine was not Used for the gears and that they were hand.-at with filie. Te. Thesuriving features of the Antikthera Mechanism, particilalary the Unnar anomaly mechanism, support the idea that our proposed planetary
mehanisms were within the engineeing capacity of the makess of the Antikythera Mechanism-but only iust mechanisms were within the engineering capacity of the makers of the Antiksthera Meccha Many aspects of the design or the Antughera Mectanism suggest thatit was essentially a rithentic \(c\) des and the genetic thenies arrent in the astronory of tis time These thenies had
 the planets to an accuracy on the order of magnitude of de degree. Though the engineering was remarkable for its era, reeent research indicates that its design conception exceeded the engineering precision of its its ea, recent research indicates that its design concepion exceeded the engineering presision of its havie cancelled out many of the subte a anomaies buitit int its design.. The output of the Unar anomaly mechanism is a notable example of this.
Ithe Antikghtera Mechanism, the thickness of the gears varies between 1.0 mm and 2.7 mm . As might be expected, the largest gears and the gears which take most mechanicial stress tend to be thicker, with b1 a 2.7 m, b2 2 at 2.3 mm and ml ot 2.0 mm . The rest of the gears range from 1.0 to 0.8 mm with an avarag

rig. \(7 x\)-nyy \(C\) showing cross section of gearing in Fragment \(A\)

In cosss.section, the features of the Antikgthera Mechanism re e difficult to understand. In many pats, the gears are very tighty packed in contiouvus layers with hitte or no air gap between the faces of the gears. In the part of the cosss-section of the Mechanism shown here, five layers of gears from el toe 6 are packed into a distance of about 7 mm (It is not six liyers since e4 shares a layer with es and k .1 ) So the font gear spacings appear to be about 1.4 mm per gear-Hthough we must be careful not to exclude the possibilyt 2.000 years. For our model of t the superior planetary mechanisiss, we have assumed a gear spacing of 1.5 m per gear-so this is within the parameters suggested by the surviving layers of gears ( of twenty-nine of the sunvining thity gears are now geneally agreat \({ }^{2}\)-the sole exception being the gear in Fragment D (see 3.6.1). Of pariciular interest for the presentstudy is the U Unara anomaly mechanism
\begin{tabular}{c} 
2.4. Lunar \\
anomaray mechanisn \\
\hline
\end{tabular}
The unnar anomaly mechanism is the most remarabable part of the surviving gearing. It has two input gear trains. The first calculutes the mean sidereal rotation of the Moon as alalulated from the Metonic cyce that 254 mean sidereal months re almost exadyy the same as 19 years. The second inut gear trin calculates . tems, this is the same as the rotation of the Line of Apsides

 Geare \(\mathrm{S5}\) efi, \(\mathrm{k} 1,12 \mathrm{l}\) al have 50 teeth. Gear es turns at the rate of the mean sidereal Moon, as calculuted by

 by the eficiccic mounting of K and k on e3, which rotates at a rate that is the difference between the
sidereal and anomalisicic mont rotationss. The effect of this is to make the varability of the motion have the period of the a aomaisisic month. This means that the system modess the andient Greek defferent and epigde model of tunar motion or the kinematically equivalente ecentre model (both of which were know was conceive. It it by no means the obvious way of modelling the deferent and epiccde theory of Uunar motion.





fig. 12 Flat area with rive att \({ }^{\text {octclock }}\) There is a deperessed flatened area in the 1 octock possition of dimensions \(19.0 \mathrm{~mm} \times 1.5 .5 \mathrm{~mm}\) (the fuil widu of the spoke). It edges ree 2.1 .1 m and 4.1 .1 mm from the central axis. It appears that there was some fitment attached here with a ivet and posibily also solder. In our model, we reconstucta a beaing here for
 large venus epicycle and carier disk, but we have not used itin our proposeded model.


In the 40 'clock position, there is a prominent hole, which looks ike the remains of a beaing. It outer diameter is 9.7 mm and it it iner diameter is 6.6 mm . 1 t is 27.1 I m from the central axis. In our rmodel, we reconstruct a bearing here for the epicycilic gear of the Mercury mechanism

 area on her 7 o coack spote (1) Cosee urand
\(\qquad\) an outside ring of 18.1 mm diameter. The central hole hasa a lightstreak acoss its diameter. On examiniation of tis featrue in the x -ry CT , it does not appear to have any mechanical significance. The outside ning is not
 outside of the ring towards the outside of the whel. is sa small hole of lenotht 4.1 mm mand diameter 1.1 mm which is not visible on the surface. It is possibly part of a lubiciction system, though we advance this dee
 with some dififience. This smal hole is drilied accuratey w whin the body of the spoke, where the onvy
for drilling would have been through the hole in which the ingog is Thet This must surely have been a difficult achievenenent for the tececmology of the time.
In our model, we reconstruct the main feature on the 7 octcock spoke as a beaing for the middle epicictic
idler gear of the solara nonomaly mechanism.

There isa raised flattened reea on the spoke in the \(70^{\circ}\) clock position, which is 17.8 mm long and 15.0 mm wide (the full widh of the spoke). This statrs 2 at 38.2 mm from the centre and dextens to the circurfierence ring. The X-ray CT suggest thatit had a rivet near its centre. We reconstruct this as the place of otacchmento
 is sovetaled to the circunference er ing is clear in the \(x\)-ray \(C\).

in the 10 'ctcock position, there is a pierced lug. The dimensions, including the corrosion, are about 7.3 mm long, 2.2 mm wide and 5.7 mm high. Its inner core is a wel.-defined topered lock, with length 5.6 mm tapering to 5.1 mm w width 1.5 mm and height 4.9 mm . It it difficiult to be precise about its original dimensions because of the corrosion. The diameter of the hole is 1.4 mm . This lug does not feature in our model and we do not understand its function.

\author{
2.7 Pillars on the periphery of the Main Drive Wheel
}

There are three pillars on the Main Divive Wheel (bi). One of these is bracketed to the periphery of the whee and attached with invets. The other two are sinply attached directy to the wheel with the bottom part of the pillar shaped to form an oval ivet. The suviving evidences shows one long support pillar and two short pilarri Their function has long been a subieet of debate, but no satisfactory and detailed explanation has so far



\section*{}
 The piliars are all close to the input crown gear and one of them has in faca merged with this gear as a result is longer than the othe two.
2.7.1. Long fillars




\section*{Fig. 20 Pillar 3 on the Man D Dive Wheel}

Two othogenal venes of fllures, as seen in x.ray \(C\) T.
The top of pillar 3 appears to thave broken off. We shal a ssume thatit orignally had shoulders similar to those of pillar 2. The heightof of pillar 3 was measured. at bout 22.5 mm Plilars 2 and 3 are bouts hhort piliars. Based on earier less accurate measurenenents, for our rodel, we have adopoted a total height of 20.5 mm with a height to the top of the shoulder of 16.2 mm . There is a discrepancy of a millimetre bewween hese parameters and ir current measurements, but this could be easily accommodated in our model withouti in any way affecting the basic design. To summarize, we estimate that the height of this pillar is \(20.5 \mathrm{~mm} \pm 1 \mathrm{~mm}\)-the wide error range being caused by the fact that the top of the pillar is broken. In our reconstruction, there are six Jayers of gears beeween the Dote Plate and the Superior Planet Plate and each gear hasa athicresess of 1.2 mm So at the maximum estinuted error of 1 mm each gear would have to be adiuted in thickness by 0.17 mm .
 the Mechanism of 1.0 to to 1.8 mm So the precise height of the survining long pillar is not citical for our reconstruction.
27.2. Long Pillars

 \(45^{5}\) angles foom the spoles



Whicaco obseneded, traces of three additional brackets and iviets in syym metrical postition stat \(45^{\circ}\) angles reative the spokes of bi. Based on this evidence, we reconstruct four Iong support pillars, equally spaced round the circunference. From the evidence of the shoulders on the pillars and their pierced ends, it appears to be almost certanin that they were designeed to cary a circular plate-as Price suggestec-and that this plate was atached to the pillars with pins. 2.7.3. Shot Pillars


 the opposites side of bli, possible rivet holes can be seen in the X-ray CT. In our model, wer econstsuct four short pllars consisting of tww pairs on opposite sides of the Main Dive Wheel. Why these pillars are offsest from a symmetrical position relative to the spokes is not clear, though it may be designed so that their nivets avoid the dovetail joints, which attach the spokes
also appear to be edsignee to cary a pate.


The final component of our new model will be the pointer system on the front Dials, so we here examine The fina componento for ur new moder wir be the popiter ssytem on the front bial, so welere exam ine the sparse evidence for pointers in the Antikgherea Mechanism There are only two incomplete pointers that
survive in the frognents. The fist is the Metonic pointer. The surving parat of t tis pointer is 5.0 m mi long. surive in the frognents. The first is the Metenic pointer. The surviving part of t this pointer is 5.0 mm long, first time. This is 5.4 m macross and about 1.0 mm thick. Its end is broken off. We have modelled our planetary pointers on the front Dials with dimensions 6.7 mm long. 2.0 mm wide and 1.2 mm thic

\section*{3. Building the New Model}
3.1.Babylonian Astronomy \& Period Relations Babylonian astrononyy of the first millennium BC. .. Through recerrds of dated obsenations beginning in the
 seventh century BC if not earier, astronomers in Babyyoni identified dime interals, generally shorter
a century, which separate very similar occurences of a single kind of phenomenon, for example the Saros compisising 223 unnar montts, which separates Lunar ecipses of almost identical mannitude and duration and the Metonic cycle comporising 19 solar tropical years and 235 Lunar montrs, which separates full or new Moons at which the Moon is at almost identical longitudes. For the planets, the most important set of intevals was the so-called "Goal--ear" periocs, which were used to forecastr repetitions of pheromenen succh a sfirts and last visibilites and stationay points; these are sub-century intevals approximately compising whole uumbers of solar years and whole numbers of a planet's symodic cyces, sot that ater one Goal-Year period a planet will repeat its phenomena a t vey nearty the same longitudes. Besides the Goal-Year periods, many other approximate eeriods are attested in Babyyonian texts, inculuding longer and more eccurate periods of the order of centuries) that were built up out of the shoter ones to seve as the basis for advanced methoos of preaicing planetary motion. \({ }^{\text {el }}\)
For the purposes of torecasting future occurences of phenomena one to-one formobseseved past occurrences, it sufficed to koow the duration of a suitable period for the planet in question without having to toke account of the planets behaviour during the period. As a basis for mathematical modeling of a planets apparere penin number \(z\) of revolutions of the planet around the ecipicic.
for example, Saturn's Goal-Year period of 59 years becomes:
57 smodic cydes \(=2\) longitudinal revolutions \(=59\) years
Greek astronomest' recorcds of dated planetayy obsevations began only bout 300 BC , and were enever as systenticic as the Babyyonian recorrds, so that their knowededge of period reations, beyond the curuest periods, was derived from Babyononian sources; thus we rei infomed by Potolemy that tipparchos, in the mid second centur BC, had a set of planetar period reations that we recognize as the Babyononian GoalYear periods. The Greeks also opplied obsenvational evidence and mathematical lgoorithms to o obtain other period relations as modification of the Babylolian ones. In some cases these were more astronomically repetition of the phenomenea of all the planets in asingle vast "Great Year" period unning to tens of thousands of years or more.

\subsection*{3.2. Geometrical theories of planetary motion}

During the second century \(B\) C, Greek astrononers seeding geometicial modest to describe the motions of the Sun, Moon, and planets enployed geocentric models that may be described anacrionisiciclly as representing a heaveny boorys postion relative to the Earth as the sum of two unifomly rotatang vectors of constant
 and in either order, each booys molion can be effected by two geomentical models sthat result in identical paths for the body while suggesting distinct physical intepretetions: Taking the longer vector as the pinimary
 minar revolution we obtain the deferent
and epicccle
model, where the body revolves unifomly along an epicgcicic dircle whose centre revolves unifomly along a deferent tirce concentric with the Earth Reversing the role of the vectors, we obtain the eccentre model, where the body revoves uniformy along

t and epicgcle model for an interior planes)




For the superior planets, the Greets enployed boot varieties of mode (Fig. 26). Assuming deferent and epigcle models for the superior planets resulted ina ssstem in which all five planets revolve on epiccrles whereas assuming eccentre modes resulted in a system in which the mean Sun plays the same role for Five planets. (The eccentre models can be troughto fos "extreme" epicgicic models in whic the epicyc. has become so large that the Earth is insidide it)

\(\max ^{2}+5=\mathrm{mav}\) Because these modeds transalate into a heliocentric system in which al the planets revolve unifomly on
 altemations of prograde and retrograde motion, but they fail topredict the varidions ina planet's
succesive synodic cyces that result trom the fatat that the true orbits are not uniform and dircular but elipitical

 indicate that they were ennioyed by Apololonios of Perga in the early second century BC, whereas durin obsevational evidence.

\subsection*{3.3. Mechanisms for planetary and solar motion}

Our focus is on geared mechanisisn for the planets that are based on the ancient Greek deferent and epyce theories that combine two circular motions. Prior to to tis study, to the best of our knowedge all atenpost to builds such mechanisms into the Antiksthera Mechanism took a dired form A gear is tumed d rete of the deferert tand asecond gear mounted epicicicaly on the first gear is turned at ather rite of the follower, turing on the edeferent axis, follows apin attached to the epicclic gear. follower is connected to a tube and a pointer is attached to the twbe. This outputs the variable motion. This is the obvious way to model the theory with gears.
3.3.1. Chicice of

Our reconstruction is based almost entirey on period reations from Babyyonian astronomy, which were cetainy kown to Greek astronomers. The tooth counts in our planetay mechanisns exactly reflect the period reations. The surniving gears in the Antiksthera Mecranismall have tooth counts in the range 15 to beilieve that it is reasonalie to restric our atention to periods shotere than a century for two reasons beyond the purey mechanical convenience of avoiding large tooth counts or compound gear trains. First, we have. no evidence that Greek astronomes before the midolle of the first century BC possessed longer and more accurate planetary periocs; on the contray we have Ptolemys testimony AAmmgest that Hipparchos, the preeminent astronome of the last three centuries B.C., weed the Babyyonian Goal Year
with the actual Solar System
We shall measure all rotations as rotations per year. It is worth pointing out that there are two inputs to
this system: the fixed gear, which turns at o rotations per year, and the rotation of the epiccle carier, which
turrs at the rate of the mean Sun at 1 rotation per year. This will be etre for all our planetary mechanisms.
We shal refer to these as the 0 input and the 1 -input to the planetay mechanisms.
Let \(r\) be the rotation of the planet round the Sun in roctations per year. Let \(p\) be the distance of the

\(n\) bee the inter-axial distance between the gears, then itis easy to estabish the basic equations of the mechanism:
    \(y / r=1+x\) iy or \(r=y / k+y\),
    \(d=p * d(x, r)\)
For our Venus mechanism \(r=8(5+8)=0.613885\) years. This compares with the actual figure for the

ear. If we make the assumplion that the radius of a gear is ropootional to it tooth count, it can easily
be established from Kepler
that this must be true
for every inferior planet nechanism.
This is clearly a helicecentic way of vieving these mechanisms. For the ancient Greets, the eeriod realtion would almost certainly have been ottained from Babylonian astrononyy of from direct obsentaion of dates of symodic phenomenena, and the pin distance fom obsenation of the maximum elongation of the planet from the Sun.
Previus studies have proposed how such inferior planet mechanisms might have been inculuded in the Antiksthera Mechanism at the front of th. .. Mechanically, this is comporativily easy-though even here he planetary mechanisms must be "intereereved"" rather than sinply stacked adicicent to each other. From to front, we have Mercury fixed gear, Venus fixed gear, Mercury output, Venus output. So the process is not entirily strightforward. The reason that the solar anomaly and the mechanisms for Mercury and Venus can of elongation foom the mean Sun. They can therefore be mounted on different spoves of the whel without their solted followers interfering with each other, as we shall see later.
Historical paralles for these "pin-and.solo" devices occur abouta millemnium and a half titer with the remarable Astrarium by Givanni de Dondi (1348-1364), an astronomical cock Which inplemented the full Potemaic systen for the planets. \({ }^{\text {In }}\) In this device, the Sun, Moon and planets eaci had their own individual dials, so avoiding the complexties of coaxial outputst. Anomalies in the de Dondi istrument are generated by pins and sotuted followers and similar clocks flowished in the centuries atemwars, such as the magnificent

\section*{(c. 1565 )...}
3.3.3. Solar
Anomaly Mechanism

Following Wrights model, we include a solar anomaly mechanism in the Antikythera Mechanism, since the subsequentut discovery of the lunar anomaly mechanism strongly supports the idea that the solar anomaly was also mechnnized. The solar theory atributued to tipparchos by Pyolenyy (AAmagest
 the deferent tums at the rate of the mean Sun and the epicyde is freed in its orientaion. The epiccle model can easily be modelled with two equal gears, seperated by an idider gear. The central geari is fixed, the middle
 to bli, the fixed gear and the epicycle must tum at the same rate (since the middle geari s an ililer gear). Therefire they musta aso turm at the same rate in the "real word", since the ropenety of "tuming at the same a fixed orientation

\subsection*{3.4. Superior Planets}

Previus sttenpts at incorporating the superior planets into the Antikgherer Mechanism have all followed one form A carier gear is tumed at the mean rate of rotation of the planet round the Sun. Attached to this is an epiccicic gear that turns at the rate of the mean Sun. A pin \(i\) s stached dat distance of \(1 / \mathrm{p}\) tines the inter axial listance of the gears, where \(P\) is the mean distance in \(A U\) of the planet from the Sun.

\subsection*{3.5. Wright's Planetarium Display for the Antikythera Mechanism}

Before assembling our rew model, we examine Wightts model.! We cannot enphasize it it importance too strongly. Undil it sappearance, the prevaling assumption was that any planetary display on the Mechanism could have shown only mean notions. \(I^{[ }\)Wright's model gave the firts solid grounding to the ideat that Mt might indeed be feeasibie to make a model of the Antikstherea mechanism that in incudes pointers displaying appropidite ecdes of prograde and retrograde motion for all five planets-both conceptualy and mechanacally.
simple methoos available
to the original workman
In pincicipe that such a scheme could not only work but could have been made in the era of the
Antikythera Mechanism From the inside of the central axis outwarcs, the eight coaxial outputs are: Moon.
Sun, Mercur, Venus, Date, Mars, Jupter and Satum-as they are in our model as well.
In our veew, the main objedcion to seing this model as an actual reconstruction of the lost planetary gearwor
is thatit does not conform sufficienty to the physical evidence from the fragnents and thatit is not in hammony with the design simplicity that has been reveeled in the surviving gearing. (In faimess we sha


 Wright observed that b1 1 turs on a bearing attacced to a central pipe, fixee to to the Main Palte, which ends in a squared boss. \({ }^{14}\) He suggests that fixed gears were attached here-and these might very plausily have been he fixed gears for inferior planetay mectanisne These gears provide the 0 -inut to the inferior planet mechanisms in this model, ast they do in other models that include the inferior Planets. In most cases, bl is the epicçicic carier and single epicgcicic gears are attacced to b1 for each inferior planet. b1 provides the 1 nput to the mechanisms.
The ineinior planets are arranged on b1. Some of the a atoors tum on bearings on the spokes of the whel and some do not-meaning that they must be supported between the spokes. Witht this schene, it is not easy Understand why the wheel had spokes, rather than being a simple disk
nce the ifferior planets and the solar anomaly have been added, there is a problem with mechanizing . nut cannot be added to the squared boss on axis b and a mean solar input for the 1 -input apparenty cannot be Contriuteded diredty by bl. Wightts model solves theses problems, by adding a separate module for ech superior planet, where the modul is ifxed to the side of an extended case for the 0 -input and an
 a gear the same size as bil for each noodue. II our viev, it it s a cumbersomene arangemenent. Indeed Wigight has considered ways of dispensing with this arrangement. \({ }^{\text {T }}\). room the 1 - -nput to each superior planet module, geaing calculates the mean rotation of the planet round the Sun, and an epiccle is attached, whic is geared to have the rotation of the mean Sun. Hence the module diredty models the defferent and epiyde nodel. Each module
\(\qquad\) , pillars (see 3.6). Wright reconstructs these pillars, but an antacheed plate here appears to be eredundant. In summary, this modele was an imporatat evolutionary step in understanding how the Mechanism might Our mode Uses a different design, which cirurumvents these problems. It is described in 3.6 .

\subsection*{3.6. Building the New Model}

 Our proposal is that a mechanis m tor the solar anomaly and mechanism for al five planets were contained
within the space in foont of the Main Divive Wheel, bi. In our model, mechanisms for the solar anomaly and within the space in front of the Min Divive Wheel, b1. In our moded, mechanisns tor the solar anomaly and



 The mechanisms do not ot inteffere with each other because they all "oo with the s sun". The outputit tevess of The mechanisms do not inteffere with each other because they al "go with the Sun". The output levels of Venus. The Sun tube must be next to the Moon output arbor, since these two outputs are subtracted in the lunar phase mechanism. \({ }^{\underline{T}}\)
It is notable that there is a spoke that is not used in our model, with a ftiting that must have had some function. It would certainly put significantstress on the engineering constraints to inculde anothe f function. It its also not clear what that tunction might be. It could possibly have been an output that showed both nodes of the Moon on the Zodiac Dial-a double ended pointer or Drgoon Hand


 The \(X\)-ry C Crevels some interesting features of the gear in Fragment \(D\). Measurements are given to the nearest tenth of a milimerte, but the decimal component cannot be erearded as being relibale. The first \(X\) -
 in fromment D , with pitch radius 1.0 mm m, and the third shows a plate with a semi.cricular end. The ivets pass triugh boeth disk and gear. The diskis about 1.0 mm thick and the gear 1.5 mm . Because there are \(t\) woo
sets of t teeth-seen on the ight hand side of the second \(C T\) s sice-it has sometimes been thought that fragment Sets of teeth-seen on the nght hand side of the second CT Slice-it has sonmetmes been trought that D might contain wo gears. However, lookng. at the first orthogonal slice, a pin can be seen enco.on
 away from the main body of the gear, giving the illusion of two gears. So we believe that there is only one gear in Frogment \(D\). On both the surface of the gear and of the disk the eeters "ME" re cearyy inscribed. This stands for "45" in the andent Greek leters- for-numbers system. It may have been a gear uumber, but we camnot find any other significance in this inscripioion.
 is whether this gear is the fixed gear on the central axis in a mechanism for Mercur. However, this camnot be he case, since this geer evidenty had a pin through its hub and this would exculue the lunar output that


 nthere \(x\) Ray sices the ips of the teedth nave been the gear. since the other teeth have broken away and so their 0 rignal postions are not evident. There are 61 surviving teeth with a small gap of 16.90. The 61 teeth repersent 60 gaps overa totat of \(360^{\circ}-16.9^{\circ}=343.1^{\circ}\). This means an average of \(5.7^{\circ}\) per gap. The \(16.99^{\circ}\) should therefore reperesent \(16.95 .7=2.96\) gaps. tis therefore naturat to infer that there are 3 gaps, meaning 2 teeth ree missing. This would imply a gear count of 63 .
The mean angle between teeth is \(5.7^{\circ}\) with standard devidion \(0.273^{\circ}\). The minimum and maximum angles are \(5.1^{\circ}\) and \(6.6^{\circ}\). Even if al the missing teeth were at the minimum obsesed angle reative to each other, the number of gaps would only be \(16.95 .1=3.3\) gaps. In the ighth: hand image, four gaps have been inserted at regular intevals of \(4.23^{\circ}\) to show the consequence of 64 tooth count. For this to be corret, we would have to befieve that the gaps between the misising teet al il ust happened to be significanty less than the minimum surviving gap. This is not plausible.
It could be ergued that the gear was made with 63 teet by by mistake, when it should have had 64 teech. However, a 6 4 tooth gear is very easy to lay out by repeeted halving of the sectors-much easier than a 63. footh gear. In adaition, it would be exper. jear in Fragment D does not display
There is another rgument that supports the idea that the gear might be the epicgcle for venus mechanism Measurements of the gear and the disk attached toitsuggest that the size of the disk is within very difficulit to a a ceepe t this hypothesis. A further question aises. 15 it possisile that the designer usedd 63 . ver difficult to accept this hpothesis. A furthe quustion arises. 15 it possible that the designer used a 63 .-
 for Venus of 0.617647 years. This compares with the figure inplied by the 8 -year cycle of Venus of 0.615388 years and tre actuaf foure of 0.151855 years. So the period reation ( 39,63 , is considerably worse than In concusion, itis sifficiult to intepret the gear in incragnent Das being part of a a inferior planet mectanism. It stunction remains a mystery to add to the mystery of the unused spoke on bl.

\subsection*{3.7. The New Superior Planet Mechanisms}

We here describe new mechanisms tor the superior planets, which will complete our
proposed Cosmos model. Sone key questions arise. Is our model consistent with the evidence Do the dimensions of the gears fit the spaces vaviable7 Is the front-to-back spacing of our proposed gears consistent with the suriving layers of gearin?? Is the concestion and design of the planetar mechanisms in accord with the surviving gear trains? Are the paranteres of the planetary mechanisns consistent wi he astronomical kowedge of the era? Are the engineering reairements feasile for the era of the Mechanism? No previus model nas been able or positive answers to tal these questions.
The superior planet mechanismstor our ropopsed model are unike any previous mechanisms in that they do not model the deferent and epiccle theories in a dired way. They ree based cosely on the unnar equally difificult and surprisisg. It is very verexpected thate essentially the same desesign works for booth the Unar anomaly and the planets. Thouoh the anommiles of the Moon and planets have distincty different -the ellipicica oldit of the Moon and the heliocentric orbits of the planets-the efferent and epiccle theories provide a unfifed solution (toa firsto order poproximation). This unity is reflected in the forms of these new mechanisms.


rig. 38 Computer model of The Planet Module

 with pins. (B) The Panane module showing the outuot tubes with pointers ataconed

In our model, the fixeed gear for fupite is the largest, since we have crosen the period reation (76, 83). We
 font of the Mechanism to back, are in the order Jupiter, Saum, Mars. The output gears-again from front to pack-are Satum, Jupiter, Mars, since we want the planetary order of the pointers to reflect the ordeding from front to back): Moon, Sun, Mercur, Verus, Mars, Jupiter, Satum. Note that the order of the pointer is The inverse of the order of the output gears because of the way that the co-xial tube sstem nust work The different orders of the fxeed Sub-Pate gears and the output gears is ot a problem: it it is ista a motter
of aranging mechanicaly for the sot gearto be the ighte distance fom the pin gears so that the output gear is at he ight level. We achieve this with the help of spacer rings attacced to the pin gears
 The coaxaid outuuts on the Zodiac Dial are eenabled by a system of concentric tubbes-as will be faniliar with ar rotaion being caried by a tube in the unnar anomaly mechanism, where the input to the system of the mean sidereal month is caried via a tube through gear es to the epicclic system. For our model of the Antikythera Mechanism, we have outputs for the Moon, Sun, Date, Merurur, Venus, Mars, Jupter and Satum In engineering tems, the manufacture of seven caxial tubes surrounding the Unnar output would have been one of the hardest challenges in the whole desig. The total width of this tube system is constrained by the fixed input gear for Mars. This is one of the reasons that we have increased the module of the Mars gears, so that the fixeed input gear is as a lage as possible. In our model, its iner radius is 10 mm . We have left a margin of 2.8 mm between the inner radius of the gear and the hole for the output 5 sytem. Our output tube system has an extemal radius of 7.0 mm and this passes through a hole in the superior planet input gears of radius 7.2 mm .The output Shaft of the lunar anomaly mechanis hasa a radius of 2.1 mm . So we have \(7.0-2.1=\) 4.9 mm for 2 al seven output tubes. We have made the tubes with thickness 0.5 mm and a deerance between he tubes of 0.2 mm . The e enghts of he tubes vary between 19.9 mm for satum and 54.4 m for the 5 保 To mexe an accurate 54.4 mm tube of extemal diameter 2.8 mm mand intemal diameter 2.3 mm in the 22 nd Century \(B\) C would have been a difficult achievement. Without the discovery of the Antiksthera Mechanism it Wrights model.' Wright cties the andient aulos (ffute), with it concentric sliding tubes, as evidence that the ancient Greeks had this capability, \({ }^{\underline{\omega}}\) There is no made in a culture with a very advanced engineering capacity.

\subsection*{3.9. Dismanting \& Calibratio}

As with al the sunviving parts of the Mechanism, our proposed model for the planetary mechanisms is designed to be taken ppart for calibration and maintenance. To reach the planetay mechanisss, the Moon Phase Mechanism (one pin) and the other pointers are ermoved. (How these pointers attached to the outpurt tubes is not dear. In our model, they are simply attached to to ings, which are a fim push.fft onto the tubes. This enables them to be set at any angle for calibration.) The for sididng catches of the font Dial Plate are then slid back and the plate is rempoed. (Evidence for one of these catches is contained in Fragnent C,., and
 of the X -ray CT of fragment. \(F\). Then the Front sub-Plate with the fixed superior planet gears is taken out. then token off. Calibration consists in moving the gear with the pir to the correct phase for the planet for that date. This can only be done to an accuracy of a gear tooth, because the pin gear must be set at an angle where it will mesh with the fixed gear, attacceed to the Front sub-Plate. This gear, for example for angle where it will mesh with the fxeed gear, tutached to the Fornt Su-Plate. This gear, for exanple tor was adjustale, though hthis would have been dififuctit) Given the inherent inaccuracy of these mechanisms, this is nota real problem. The sot gear is then engaged with the pin and the output gear meshed with the slot gear. The pointer would then be set on the output tube at the corect eclipicic Iongtude for the calibration date for that planet

\subsection*{3.10. Accuracy of the Planetary Mechanisms} The designer right have hoped that, fter going through the immense trouble of builiding the Mechanis
and calibrating it, the outputs would stay accurate for many years. the tecchnology of the era of the Antikthera Mechanism could really be described as "exact"-both the science and the mechanical realization of its refiditions were very inacaurate.


\section*{Iig. 39 Eroors in defererent and epiciccle theory for the planet Mars, middele seven retrogrades in 1 st century BC.}

 tor mass
We compare the oostions of Mars. as reconstructed by NASA with the Mechnaism's predicitions over the
 be seen, ammunting to nearty \(38^{\circ}-\) more than a avoiac sign-at the retrocradeses. The deferent and
 ror mis for Mars. More accuracy would have to wait for more soppisisicated theories such as those employed by Petolemy in the second century AD. Added to these inherent theoretical erors were significant mechanical inacuracies because of the way that the rotations were trassinted throught the gear trains. the sophisiscated astonomical theories curent in it day, the the sole witess to l lost history of billilint engineeing, a conception of pure genius, one of the great wonders of the ancient word- butit diont really work very well!

\subsection*{3.11. Markers for the planets}

The Back Cover I Iscripition that describes the Front Dial mentions "the litte golden sphere", presumably refering to the Sun. In addition, there was a tradition of using "magic stones" as makers for the planets." This paper cites the following extract from a 2 2dd or 3 3d century \(A D\) papyrus \(P\) P.
Wash. Uni.i.in.
the astrologer lays out particuluars sones to trepresent the Sun, Moon and planets."
the astrologe lays out partii
...a voice comes to
you speazing. Let the
stars be set upon the
board in a coordance
with theirl nature
Moon. And le the Sun
Moon Ander et the Sum
siver, Konos of
Sosidian, rese of
Dobsidian, Ares of
lapis azulif viened
with oold, Hemes
with gold, Hemes
turruose: let zeus be
of (whitishr)
stone, arstalline (7)...

 golden sphere" iscripition on the Back cover, these pointers include conjectural spherical marker beads in different meetal and seni-precious stones, which are placed at dififerent distances along the pointess, \(s 0\) that they create a "cosms" for Sun, Moon and planets in the order: Moon (sivere), Mercury (turquouse), Venus (Iapis Iazili), Sun (goold), Mars (red onyx), Jupiter (white crystal) and Satum (obsiciain).
3.12. Historical Context and Significance

The last three centuries BC were a period during which mechanical tectnology and astronomy both developed rapily in the Greeks speaking wold. The sunviving Greek technical literature on mechanical deeices attests to intense advivity especilly with respect to miltary technology (artillery and the ilke) add witten evidence for gear-bobesed technology, none of which goes beyond the basic p pininiples of e enployic
 Antikgthera Mechanism shows that Greek gear tectnology was far in advance of the level we would infer from the wirten record, having attained mastery of differential gearing (as in the Moon ball apparatus) as well as the transation of unifom into nonuniform rates of motion by means of epiccicic gearing and pir-andslot couplings. While the modeding of astrononical phenomenaa provided an obviuus motivation for the development of such contrivances, its is iteresting to speculate about other possible applications they might have had in antiquity, for example in purely mathematical calculating machines and in automata. In the astrononyy of this period certain teens stand out. the investigation of kinematic modes built up out of nonconcentric unifom circular motions as explanations of the obsenale e behawiour of the heaveny bodies; the integration of Babluonian astronomy, with its enphasis on quantitative prediciton, into this

 have correcty reconstructed its fornt display, turns out to embody al these aspects. Its geamoork invisibly minicked the kinds of geomentical model l whose theoretical vaiditity wa among the chief
research questions of the time: through its front isplay it gave a graphic demonostration of how models based research questions of the time: through it fronel dispalay it gave a graphic demonstration of how modeds based on eccentres or epiccles could account for the varing apparents speeds of the Sun and Mon, the lim period reations underlay many, if rot all, of the gear trains, and the readout of the heavenly bodies' Iongitudes
 especilly remarabale, however, is that the fornt display could combine this function of generating technical especally remarabale, however, is that the front display could combine this function of generating technical data with aliadicic finction of portraying the standard Greek cosmology in motion in a form the would have Roman antiguity, we re extremely fortunate to have the remains of one of such encyclopeadic complexity.

\section*{Appendices}
4.1. Proof that the Superior Planetary Mechanisms work in principle






```

sminall

```





```

mwinds speuputatftressem

```





The proof is essentially the same as the proof for the Unnar anomaly mechanism in a previus pubicicaion.


a key concept in the proof. The proof can easily be translated into a purely geomentic proof, which would
have been accessible to the andient Greeks
In a geocentric Sinpified Solar System
, the

Sun rotates round the Eath at a rate of 1 rotation per year and the planets rotate in circles around the Sun at their mean distances and mean rites of rotation. If the solar system bodies all moved at constant rates in dircular orbits, then the deferent and epicyde modeds of the planets would be an exadt model (with the right parameters). We shal show that our new superior planetary mechanisms model the motion of the planets
in our Simpified solar system, limited ony by the eccurac of thei reenid reations. In our model., (g1), 92 is in our simpifired Solar Systitem limited ony by the eccuracy of their period reations. In our model, (g1, - 92\()\) S period reation for the plane, where gra ad ga re positive integes. the planet round the Sun is, \(r=-22 /(91-q 2)\) and it rotation is \(1 / r=1-91 / 9\) r rotation per year.
then the vector deffining Mars from the Earth) is \(\mathrm{s}+\mathrm{p}\), where P is the mean distance of Mars from the \(S\) S then the vecor defing Mas from the Ean) the reverse order as \(\mathrm{s} \mathrm{m}+\mathrm{s}\), whic \(i\) is equivalent by the compuntatuivity y veetor addition.
xy. The points \(s\) is fixed to 64 , sinceitis the mirror of p in the bg'-miror and the gears \(G 3, G 4\) have


 equation of \(\begin{aligned} & \text { nesting gears: }\end{aligned}\)

\(\operatorname{Rot}(G 2 \mid \mathrm{bl})=(-\mathrm{g} 1 / \mathrm{g})^{2} *-\mathrm{g}=\mathrm{g} 1 / \mathrm{g} 2\)
Since \(m\) is the mirror of p ( fixed to \((\mathbb{\sigma}\) ) in the \(\mathbf{b}\) g-minror, it rotation, relative to bu 1 is:
\(\operatorname{Rot}\left(m \mid b_{1}\right)=-91 / 92\)
(sidereal frame of reference) can then
\(\operatorname{Rot}(\mathbf{m})=\operatorname{Rot}(\mathbf{m} \mid \mathbf{b 1})+\operatorname{Rot}(\mathbf{b 1})=-91 / 92+1=(92-91) / 92=1 / r\) Se point \(m\) rocates at the mean rotation of the planet. The vector joining \(\mathbf{b}\) with \(m\) is \(\mathrm{d} \mathbf{d}\), where d \(d\) He distance of the pin p from the centre of \(62, \mathrm{~g}\)
secuse the bg-mirior and the bos-mirior are both orthogonal to bgg' and so are paralle, the points \(m s\) and are all the same distance foom the bog' axis and:
length \(\mathrm{ms}=\) length \(\mathrm{gg}=\mathrm{d} / \mathrm{p}\).
So, if \(\leq\) is s unit vector in the direction of the bgg' axis, then the points \(s\) is defined by the vetor.
\(\mathrm{dm}+(\mathrm{d} / \mathrm{p}) \mathrm{s}=(\mathrm{d} / \mathrm{p}) \mathrm{s}+\mathrm{pm})\)
Simplifed Solar System
Obviousy proofs can also be devised sing elementay trigononetry or complex number theor, but they do not really give clear geometrici insights into why the mechanisms work and they would not have been accessible to the andient Greeks. We are still not dear as to exady how the ancient Greels would have arived at the idea for these mechanisms. They are so brilliant, but very hard to conceive
Our rooo of the "corectness" of these modess is is ustified in tems of a helicecentic wiew of the solar system. If is remarkable that the andient Greeks invented these modess in the ikely absence of an accepted
Al the folowing parameters refert to our computer reconstruction of the planetary mechanisms. No physical
4.2.1. Shor Pillars \&
Date
Plate ( \(P\) P)
```

Front of b1 to shoulder. 16.2 mm
Maver stouncer: 1.2. 2m
Wutht of pllar: 5.0 mm
Width ofiliar. .0.0 mm
Deppto ofilur. 4.4 mm
Top of pintotop of pillar: 1.5 mm
Total heightof ofllar: 20.5 mm
Tickess of DP: 1.5 mm
lengthof DP: 123.0 mm
Wath of DP: 24.8 mm
4.2.2.Long pilurs)
Front of bi to shoulder: 27.5 mm
Soulder to oottom of pin: 2.0 m
Wath of pillar. 9.1 mm
Deph of pliar. .7.0 mm
T
Top of pinto top of pllar: .1.5 mm
Total height of pllar: 32.0 m
Thickess of SPP: 2.0 mm
Diameter of Sp:: 130.0 mm
Diameter of hole in centre 40.0 mm
< 4.3. Inferior Planets
The following are
the parameters that we
have used in our model
for the inferior Planets
and Sun.TThey are designed
so that the dimensions
match the evidence on
bI.T.The pins are 1 mm
in radius. The slots
Mar taken as minimum
lenght +0.2 mm to
MERCURY

```



4.2.4. Superior Planets

The following are
the parameters that we
have used in our mode
for the superior
planets, There are
planests. There are
sone options but most of
the paraneters
are essentially detemined
by the design
constraints. The thicrness
of the gears is 1.2 mm
with gaps beeween them
of 0.3 mm The pins are 1
m min radius. The slots
are taken as minimum
length +0.2 mm to



have a 14.4 mm diameter hole through their centres, so that al the outputs can pass through

\section*{Acknowledgements \& Author Contributions}

This paper is partly based on datat processed, with peemisision, from the archive of experimental invesigation in Athens. The authors gratefully accrow wedede the support of the Antikhthera Mechanism Research Proiect and


 from C. Reinhart of Volume Graphics, We thank the team from Hewett-Packard (US), led by T. Maldeender. who caried out the surface ingaing. TF. was in part funded by the AG. Leventis foundation. The authors also wish to thank four anonymmous readers of eariier drafts of this paper for several corections and suggestions. AJ. analysed the inscriptions and identified names for the planets on the back cover, as well as descripitions how the astrononical bodies were displayed. He iffered that the front of the Antikythera Mechanism explicity represents the Cosmos .T.F. proposed new mechanisns for the superior planets which enulute the previousy identififed unar mechanism He construted a new model of the Antikythera Mechanism that fully realizes the Cosmos hypothesis. Both outhors contributed to the witten manuscrip and T.F. designed the lilustrations
Notes \& Reference
6.1 Notes

1 Andikythea Mechanim Research Project, Images Fists LLd, 10 Hereford Road, South Ealing, Lonion W5 4 SE,
UK, tony@imagesefirstom.
2 Institut for the Suly of the Ancient World, New York Univesity, alexander.jones@nyu.edu.
 onze coins sound at the sitie in

4 See the deailed accouns of the episode in Svoronos \(1903,1-17\) and Throckmorton \(1970,113-16\)
EThe earieses known reports of the finding of the Nechanisn's fragnens appeared in the A Aterian newspapers To Asty and Strip on May 21 (Julian), 1902 The early yeports sate describe itas a chance discovery on the parto f Spyridon Stais the former minister of e education who had negotiated and ovesesen the salvage of the Anilightera wrech.
E Price 1974; Wright, Bromle, \& Magktou 1995; Freethe tal 2006.
2Malbender \& Geib 2006; X -Tek Sysems Lud. 2006,
8. Freethe eal 2006 .
\({ }^{9}\) Price 1974, 14, wigigri2004, 0;: Freehe eat. 2006, 587
10 Price 1974, 17-18.
11 Price 1974, 6-17, 4, 46, and 49,
12 The spirials stucture was idenified by Wright 2004, 10 .
\({ }^{13}\) Wight 2005a, 10 .
 it had been supposed to be the putative Callippicic dial.
15 Freethe tal. 2006,589
\({ }^{16}\) Freeth, Jones, Serele, and Bisabiks 2008, 616
17 Freethe at. 2006, 589, Freeth, Jones, Steele, and Bisakis 2008, 616
18 A new complete ranscripioion and suly yof the Back Cover lsscripion will be publisiseded desewhere.
19. Remm 1905-1006.A deailed sudy of Rehms invesigations of the Mechanism is is preppant 20 Wright 2005s; Freethe eal. 2006, 588, Freeth, Jones, Steele, \& Bisasalis 2008, 614.616. 21 Wrigh 2002
22 The history of Greek planeaty modelling before Polenny is poorly documeneed. The eccentre and deferentand.
 of ther rodiacal anomaly (ie. the varaitions in synodic cycles dependert on the pepmets songiume). Accorting io
 he synodic and the codiacal anomalies by mading the deferent ina defererentande epirgcle model iseff a n eccentre.




26 Price 1974, 28 .
27 Evans, Camana, and Thomdike 2010.
\({ }^{28}\) Wight 2004,8 .
29 Evans, Carman, and Thomidike 2010, 37 notes 16 and 21
\({ }^{30}\) Wigight 2006, 37,-322

32 Heiberg 1907,70-73.
\({ }^{33}\) Freeche etal. 2006, supplementary informaion 7 .
34 Freet, Jones, Steele, and Biscakis 2008, supplementary intormation 10.
\({ }^{35}\) Price 1974, 17-19.
 on readings made by George Stanires in 1958 .
3Z Freethe cal. 2006, supplementary infomamion
\({ }^{38}\) Price \(1974,9\).
92 Sais 1005, 21-22.
74 Wight 2002,170
55 Wight 2003, 93

I2 King \& Millum 1978,41 .
\(77^{72}\) Svoronos 1033 , plate.
79 Pirice 1974, 36 .
B0 Wight 2 2055c, 5 ; Freethe etal 2006, supplenentay information 1s
8lㅢ Price 1974,\(36 ;\) Wight 2005c, 7
822 Freeh e eal. 2006,500 fig.
\({ }^{83}\) Wight 2002,177 fig.
\({ }_{84}\) Wright 2003, 94
\({ }^{\text {E5 P Price } 1974, ~ 14 ; ~ W i g h t ~ 2003, ~} 90\).
\({ }^{86}\) Yeomans, Chamberiin, etal. 2011
87 Edmunds 2011 .
ge Evans 2004, 1424

Planets were subject to some varation
90 Freeht tal. 2006, supplemennary information 25-27.

Alaboe 2001 Epicodes tron the
Eanty istory of Astronomy . New York

Bailie, G. H., H. A Loyd, and F.AB. Ward. 1974. The
Hanetarium of Giovann
Je Dondi .Waduurst, Sussex, UK.
sition, J. P., and C. Walker. 1996. "Astronomy and Astrology in Mesopotataia." In C. Walker,
ed. Attronomy Before
Lhe Telescope. London. 42 -67.
Antiuuarian Horocogy \(\quad\) 18, \(641-652\).
Edmunds, M. G. 2011 . "A. Intial A Asessment of the Accuracy of the Gear Trins in the Antikthera
Mechnism". Juumal for the History , 42, 30-320.
of Atstonony
Edmunds, M. and P. Morgan. 2000. The Antikythera Mechnanism still a nystery of Greed
astronomy" A Atronony and Ceophysics

```

